-(4(x^2-6))/((x^2+6)^2)=0

Simple and best practice solution for -(4(x^2-6))/((x^2+6)^2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -(4(x^2-6))/((x^2+6)^2)=0 equation:



-(4(x^2-6))/((x^2+6)^2)=0
Domain of the equation: ((x^2+6)^2)!=0
x∈R
We multiply all the terms by the denominator
-(4(x^2-6))=0
We calculate terms in parentheses: -(4(x^2-6)), so:
4(x^2-6)
We multiply parentheses
4x^2-24
Back to the equation:
-(4x^2-24)
We get rid of parentheses
-4x^2+24=0
a = -4; b = 0; c = +24;
Δ = b2-4ac
Δ = 02-4·(-4)·24
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*-4}=\frac{0-8\sqrt{6}}{-8} =-\frac{8\sqrt{6}}{-8} =-\frac{\sqrt{6}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*-4}=\frac{0+8\sqrt{6}}{-8} =\frac{8\sqrt{6}}{-8} =\frac{\sqrt{6}}{-1} $

See similar equations:

| -258=c-253 | | -3v-41=7(v+7) | | 3x+10=4x+9 | | 10p^2-3p-3=0 | | 8x-32=-3x+23 | | -29(y-5)=y+1 | | -16-6x=-8(2-2x | | 9^x-2=(1/27)^x | | f(-1)=3(-1)^2-3(-1)+1 | | -3=2+5p | | 5n^2+27n=57 | | 3y+2=4y-5 | | 32=x+52 | | x+2+2x+8=4x+9 | | 6(1-2x)=-26+4x | | 5(3y+7)=95 | | C=3.14×d9 | | 8x-40-10x=28 | | 21+2x+x=180 | | 9=3(v+5)-6v | | N-2+8=-1+2n | | 2y^2=120 | | 15x+4=−21 | | 45d-6=25.50 | | 9x+2+9=64 | | 12x-6x+5+4x=10x+6 | | 3(6y+7)=57 | | 1/2x+1/9+1/2=32/9 | | 3(2x=+6-2) | | 10^c=1,000 | | 2x/14=28 | | 10y-3y=35 |

Equations solver categories